Does International Trade Stabilize Exchange Rate Volatility?

Hui-Kuan Tseng, Kun-Ming Chen, and Chia-Ching Lin *

Abstract

Ever since the early 1980s, major industrial countries have been suffering from severe multi-lateral trade imbalances, accompanied by tremendously volatile exchange rates. This paper examines the relationship between trade balance and exchange rate volatility. A stochastic macroeconomic model with sticky prices is developed. Our comparative statics and numerical simulation results indicate that an increased trade balance (relative to domestic aggregate demand) tends to reduce exchange rate volatility when the domestic absorption shock disturbs the economy. In the presence of all other domestic and foreign shocks, however, an increased trade balance tends to augment exchange-rate volatility, except for the case of a disturbance in domestic real income in which the effect of an increased trade balance is indeterminate. Our results suggest that whether trade imbalance has aggravated exchange rate volatility in many industrial countries is an open question, which needs to be solved through more empirical investigations.

Keywords: Trade Imbalance, Exchange Rate Volatility, Stochastic Macroeconomic Model
JEL Classification: F17, F31, F47

* Corresponding author, Hui-Kuan Tseng, is a Visiting Associate Professor, Department of International Trade, National Chengchi University, Taiwan and Associate Professor, Department of Economics, University of North Carolina at Charlotte. Tel: (704) 687-4123, Fax: (704) 687-6442, E-mail: htseng@email.uncc.edu.: Kun-Ming Chen, is an Associate Professors, and Chia-Ching Lin is a graduate student, at the Department of International Trade, National Chengchi University, Taipei, Taiwan
I. Introduction

Ever since the early 1980s, major industrial countries have been suffering from a severe multi-lateral trade disequilibrium – the U.S. has exhibited huge trade deficits against Japan, Canada, West Germany, Asia’s newly industrializing countries, and more recently, China. Foreign exchange rates in many countries at the same time have been tremendously volatile since the breakdown of the Bretton Woods system in 1973. Are these two phenomena related? To the best of our knowledge, this issue is still not well investigated.

A popular view is that exchange rate volatility tends to reduce the volume of international trade, but evidence is not unanimous. For instance, Abrahms (1980) and Thursby and Thursby (1987) found a large negative effect of exchange rate volatility on trade, whereas Hooper and Kohlgagen (1978) showed no significant effects on trade volumes but rather a large effect on commodity prices. Later studies, including Frankel and Wei (1993), Eichengreen and Irwin (1996) and De Grauwe and Skudelny (2000) all reported small or insignificant negative effects.1 Tenreyro (2003) argued that the estimation techniques used in previous studies of the impacts of exchange rate volatility on trade have multiple sources of problems that appear to bias their empirical findings.2

Most of existing studies, both theoretical and empirical, focus on the effect of exchange rate volatility on trade. Few papers have attempted to examine the reverse causality of whether international trade can dampen exchange rate volatility. In his optimal currency area hypothesis, Mundell (1961) firstly looked into this reverse direction of causality. He found that trade flows reduce real exchange rate volatility. More recently, Hau (2000) and Obstfeld and Rogoff (1996, 1 Cote’ (1994) provides an extensive survey of the literature – both theoretical and empirical – on exchange rate volatility and trade.

2 Another strand of research also has emerged to explore whether central banks can somehow intervene in foreign exchange markets so as to reduce exchange rate volatility. One can look at examples such as Kawai (1984), Eaton and

This paper reexamines the same reverse direction of causality in a different perspective. We develop a stochastic macroeconomic model to answer the following central question: Does trade imbalance play a role in aggravating exchange rate fluctuations due to random disturbances originating in the home country and abroad? This study supplements the literature by focusing on the causality relationship from international trade to exchange rate volatility rather than the other way around. In addition, this investigation provides more evidence of whether international trade may help stabilize exchange rate movements, as seen in Mundell (1961) and others.

The remainder of this paper proceeds as follows. Section II outlines the structure of our theoretical model. Section III first solves the model for the equilibrium exchange rate and its volatility under the rational expectations hypothesis, and then the impact of trade imbalance on the volatility of exchange rate is examined. Section IV conducts numerical simulations of the effect of trade imbalance on the volatility of the nominal exchange rate and real exchange rate with baseline parameter values. Sensitivity analysis on the results is also implemented. Brief concluding remarks are given in the final section.

II. The Model

The model of a small open economy is summarized by the following equations:

\[ d_t = b_1 a_t + b_2 T_t \quad b_1 > 0, \quad b_2 > 0 \]  
\[ a_t = \alpha_1 y_t - \alpha_2 \left( r_t - E_t [p_{t+1} - p_t] \right) + u_t \quad 1 > \alpha_1 > 0, \quad \alpha_2 > 0 \]  

\[ T_t = \beta_1 \left( e_t + p_t^* - p_t \right) + \beta_2 y_t^* - \beta_3 y_t, \quad \beta_i > 0, \ i = 1, 2, 3 \] (3)

\[ p_t = p_{t-1} + \phi \left( d_{t-1} - y_{t-1} \right), \quad \phi > 0 \] (4)

\[ m - p_t = \Omega_1 y_t - \frac{1}{\Omega_2} r_t + u_{2t}, \quad \Omega_1 > 0, \Omega_2 > 0 \] (5)

\[ r_t = r_t^* + E_t \left[ e_{t+1} \right] - e_t \] (6)

\[ y_t = \bar{y} + u_{3t} \] (7)

\[ y_t^* = \bar{y}^* + u_{4t} \] (8)

\[ p_t^* = \bar{p}^* \] (9)

\[ r_t^* = \bar{r}^* + u_{5t} \] (10)

where all variables except capital letters, \( r \) and \( r^* \) are measured in logarithm, the subscript \( t \) denotes period \( t \), and \( E_t [\cdot] \) is an expectation operator based on all information available in period \( t \). The definition of each variable is given in Table 1.

Equation (1) is a log-linearized aggregate demand function specifying that domestic aggregate demand is composed of real domestic absorption, \( a_t \), and real trade surplus, \( T_t \) (or real trade deficit as \( T_t \) is negative) in period \( t \).\(^3\) The parameters \( b_1 \) and \( b_2 \) reflect the weights of domestic absorption and real trade balance in the economy’s aggregate demand, respectively.

Equation (2) states that real domestic absorption \( a_t \) depends positively on real domestic output, \( y_t \), and negatively on domestic real interest rate, \( r_t - E_t [p_{t+1} - p_t] \). The current domestic absorption is also affected by a stochastic disturbance, \( u_{1t} \), which contains random changes in either domestic fiscal policy or private consumption (investment).

Equation (3) indicates that real trade balance, \( T_t \), is determined by current terms of trade

\(^3\) In fact, this specification of domestic aggregate demand is in line with Bhandari (1983).
(e_t + p_t^* - p_t), foreign income y^*, and domestic income y. Equation (4) stipulates the same price adjustment rule specified in Dornbusch’s [1976] seminal sticky price model, where the price of goods is predetermined at any point in time. The positive parameter, φ, represents the speed of price adjustment in response to excess demand (d_{t-1} - y_{t-1}) for domestic goods in period t-1. The greater the value is of parameter φ, the more flexible will be the price of the goods. As φ goes to infinity, the goods market is continuously cleared along the time horizon. However, since φ is assumed to be finite, equilibrium in the domestic goods market is unlikely to be achieved in the short run.

Equilibrium in the domestic money market is characterized by equation (5). The nominal stock supply of domestic money m is assumed to be fixed. The domestic real money demand is of the usual form in that it is positively associated with domestic real income and negatively associated with domestic nominal interest rate r. It is assumed that foreigners do not hold domestic money and the only opportunity cost of holding domestic money is the domestic nominal interest rate. Like the goods market, the domestic money market is subject to a random disturbance, u_{2t}, representing random changes in domestic monetary policy or private money demand.

Equation (6) is an uncovered interest parity condition, linking domestic nominal interest rate r_t to foreign nominal interest rate r_t^* plus an uncovered risk premium E_t[e_{t+1} - e_t]. This condition implies that agents are risk-neutral and political risk is non-existent.4

Table 1 Variable Definitions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Domestic real aggregate demand</td>
</tr>
<tr>
<td>a</td>
<td>Domestic real absorption, which is the sum of private and government consumption and gross investment</td>
</tr>
</tbody>
</table>

---

4 Eaton and Turnovsky (1983) showed that covered interest parity would collapse in the presence of political risk.
\[ T \] Real aggregate trade balance
\[ y \] Domestic output level; \( \bar{y} \) = long-run stationary level of \( y \).
\[ p \] Price of domestic goods
\[ r \] Domestic nominal rate of interest
\[ m \] Domestic nominal money supply
\[ y^* \] Foreign output level; \( \bar{y}^* \) = long-run stationary level of \( y^* \).
\[ p^* \] Foreign price level; \( \bar{p}^* \) = long-run stationary level of \( p^* \)
\[ r^* \] Foreign nominal rate of interest; \( \bar{r}^* \) = long-run stationary level of \( r^* \)
\[ e \] Nominal exchange rate (measured in terms of units of domestic currency per unit of foreign currency)
\[ q \] Real exchange rate
\[ E_t[X_{t+1}] \] Expectations of \( X \) in period \( t+1 \) conditional on information available in period \( t \)
\[ u_1 \] Random disturbance in domestic absorption
\[ u_2 \] Random disturbance in excess supply of domestic nominal money
\[ u_3 \] Random disturbance in domestic real income
\[ u_4 \] Random disturbance in foreign real income
\[ u_5 \] Random disturbance in the nominal foreign rate of interest

Equations (7), (8) and (10) state that domestic income \( y_t \), foreign income \( y^*_t \), and foreign nominal interest rate \( r^*_t \) fluctuate around their own steady-state equilibrium, respectively, subject to random disturbances \( u_{3t} \), \( u_{4t} \), and \( u_{5t} \). Equation (9) implies that foreign price level \( p^*_t \) is exogenous and fixed at the long-run stationary level. In fact, all the foreign variables mentioned above are exogenous, reflecting the fact that the home country is a small open economy.

There are five random disturbances in the model – one domestic demand shock \( u_{1t} \), one domestic monetary shock \( u_{2t} \), one domestic income shock \( u_{3t} \), one foreign income shock \( u_{4t} \) and one foreign monetary shock \( u_{5t} \). These disturbances are white noises and are assumed to be independent of each other with mean \( E_t[u_{jt+1}] = 0 \) and have a bounded variance, \( V_t[u_{jt+1}] < \infty \) for \( j = 1, 2, 3, 4 \) and \( i \geq 1 \).

### III. Derivation of Rational Expectations Equilibria and Comparative Statics
1. Derivation of rational expectations equilibria

We can reduce the model to a system of two equations with two endogenous variables, \(e_t\) and \(p_t\). In what follows we proceed to solve the reduced-form system under the rational expectations hypothesis. The rational-expectations solution for each endogenous variable is then expressed in terms of all random disturbances and structural parameters. The first step is to obtain a set of reduced form equations. For simplicity, we set the values of those exogenous variables such as \(\bar{y},\ \bar{y}^*,\ p^*\) and \(r^*\), to be equal to zero. Thus, from equation (5), the domestic nominal interest rate \(r_t\) is given by:

\[
\begin{align*}
r_t &= \Omega_2 p_t + \Omega_3 u_{2t} + \Omega_4 \Omega_2 u_{3t}. \quad (5')
\end{align*}
\]

Using equations (1), (2), (3), (5'), (7), (8) and (9), the domestic price adjustment equation (4) becomes,

\[
\begin{align*}
p_t &= \gamma_1 p_{t-1} + \gamma_2 e_{t-1} + \gamma_3 u_{u_{tt-1}} - \gamma_4 u_{2t-1} + \gamma_5 u_{3t-1} + \gamma_6 u_{4t-1} \quad (11a)
\end{align*}
\]

where

\[
\begin{align*}
\gamma_1 &= \frac{1 - b_1 \alpha_2 \phi - \phi b_1 \alpha_2 \Omega_2 - \phi b_2 \beta_1}{1 - b_1 \alpha_2 \phi} , \\
\gamma_2 &= \frac{\phi b_2 \beta_1}{1 - b_1 \alpha_2 \phi} , \\
\gamma_3 &= \frac{\phi b_1}{1 - b_1 \alpha_2 \phi} , \\
\gamma_4 &= \frac{\phi b_1 \Omega_2}{1 - b_1 \alpha_2 \phi} , \\
\gamma_5 &= \frac{\phi (b_1 \alpha_2 - b_1 \alpha_2 \Omega_2 - b_2 \beta_2 - 1)}{1 - b_1 \alpha_2 \phi} , \\
\gamma_6 &= \frac{\phi b_2 \beta_2}{1 - b_1 \alpha_2 \phi} .
\end{align*}
\]

Substituting equation (5') for \(r_t\) in equation (6), we rewrite the uncovered interest parity condition as

\[
\begin{align*}
E_t[e_{t+1}] &= e_t + \Omega_2 p_t + \Omega_3 u_{2t} + \Omega_4 \Omega_2 u_{3t} - u_{4t} . \quad (11b)
\end{align*}
\]

Equations (11a) and (11b) represent the reduced-form system mentioned above. To solve this
system, we use a two-step procedure under the assumed Muthian rational expectations. First, we find the solution for $E_t[e_{t+1}]$, a conditioned expectation of the exchange rate, by taking expectations for (11a) and (11b) in period $i$ ($i > 0$) conditional on period 0 (Note $X_{i,0} = E_0[X_i]$). In so doing, all the disturbance terms are washed out for their conditioned means equal zero and therefore we can obtain.

$$p_{t,0} = \gamma_1 p_{t-1,0} + \gamma_2 e_{t-1,0} \quad (12a)$$

$$e_{t,0} = \Omega_2 p_{t-1,0} + e_{t-1,0} \quad (12b)$$

Equations (12a) and (12b) can be rewritten in the matrix form as

$$\begin{bmatrix} p_{t,0} \\ e_{t,0} \end{bmatrix} = \begin{bmatrix} \gamma_1 & \gamma_2 \\ \Omega_2 & 1 \end{bmatrix} \begin{bmatrix} p_{t-1,0} \\ e_{t-1,0} \end{bmatrix}$$

or

$$X_{i,0} = AX_{i-1,0}.$$  

The characteristic equation of the system of (12a) and (12b) can be derived by setting the determinant of $(\lambda \otimes I - A)$ equal to zero, where $\lambda$ denotes the characteristic vector and $I$ is a 2x2 identity matrix. Assuming that the characteristic roots are distinct, we solve the characteristic equation for $p_{t,0}$ and $e_{t,0}$ as:

$$p_{t,0} = B_1 \lambda_1^i + B_2 \lambda_2^i, \quad (13a)$$

$$e_{t,0} = B_1 Z_1 \lambda_1^i + B_2 Z_2 \lambda_2^i, \quad (13b)$$

where $B_1$ and $B_2$ are two arbitrary coefficients determined by two initial conditions, and $Z_1$ and $Z_2$ are the elements of a normalized characteristic matrix of which the first row is an unit vector. The characteristic roots, $\lambda_1$ and $\lambda_2$, are

---

\[
\lambda_1, \lambda_2 = \frac{(1 + \gamma_1) \pm \sqrt{(1 + \gamma_1)^2 - 4(\gamma_1 - \gamma_2 \Omega_2)}}{2}.
\] (14)

As is well known, \( \lambda_1 \) and \( \lambda_2 \) must satisfy the following:

\[
\lambda_1 \cdot \lambda_2 = \gamma_1 - \gamma_2 \Omega_2, \tag{15a}
\]
\[
\lambda_1 + \lambda_2 = 1 + \gamma_1. \tag{15b}
\]

To ensure that the system is stable, it must be parameterized such that the inequality condition holds:

\[
1 - (1 + \Omega_2)(b_2 \beta_1 \phi + b_1 \alpha_2 \phi) > 0. \tag{6}
\]

We now employ the general solutions for expectations variables in equations (13a) and (13b) to obtain

\[
E_t[\varepsilon_{t+1}] = B_1Z_1\lambda_1^{t+1} + B_2Z_2\lambda_2^{t+1} \tag{16}
\]

We now substitute equation (16) back into (11b) and divide the latter equation by \( \Omega_2 \). This procedure yields

\[
p_t = -\Omega_2^{-1}\varepsilon_t - u_{2t} - \Omega_2^{-1}u_{3t} + \Omega_2^{-1}u_{5t} + \Omega_2^{-1}(B_1Z_1\lambda_1^{t+1} + B_2Z_2\lambda_2^{t+1}). \tag{17}
\]

Substituting (17) into (11a), the whole system further reduces to one first-order difference equation:

\[
\left[1 - (\gamma_1 - \gamma_2 \Omega_2)L\right]\varepsilon_t = -\Omega_2W_t, \tag{18}
\]

where \( L \) is a lag operator such that \( LX_t = X_{t-1} \), and

\[
W_t = u_{2t} + \Omega_1u_{3t} - \Omega_2^{-1}u_{5t} + \gamma_3u_{1t-1} + (\gamma_1 + \gamma_4)u_{2t-1} + (\gamma_5 - \gamma_1 \Omega_1)u_{3t-1} + \gamma_6u_{4t-1} + \gamma_7\Omega_2^{-1}u_{5t-1}
\]
\[
- \Omega_2^{-1}\left(B_1Z_1\lambda_1^{t+1} + B_2Z_2\lambda_2^{t+1}\right) + \gamma_1\Omega_2^{-1}\left(B_1Z_1\lambda_1^{t} + B_2Z_2\lambda_2^{t}\right). \tag{5}
\]

We can easily solve equation (18) for \( \varepsilon_t \):

\[
\varepsilon_t = -\Omega_2\sum_{k=0}^{n}(\gamma_1 - \gamma_2 \Omega_2)^kW_{t-k} + D(\gamma_1 - \gamma_2 \Omega_2)^t. \tag{19a}
\]

\[1 - (1 + \Omega_2)(b_2 \beta_1 \phi + b_1 \alpha_2 \phi) > 0 \] implies \( 1 > \lambda_1 \cdot \lambda_2 > 0 \) since \( \lambda_1 \cdot \lambda_2 = [1 - (1 + \Omega_2)(b_2 \beta_1 \phi + b_1 \alpha_2 \phi)](1 - b_1 \alpha_2 \phi)^{-1} \). It also
where $D$ is an arbitrary coefficient determined by initial conditions. Moreover, we obtain the solution of real exchange rate $q_t$, or $e_t + p_t^r - p_t$, as

$$q_t = -\left(1 + \Omega_2 \right) \sum_{k=0}^{\infty} \left(\gamma_1 - \gamma_2 \Omega_2 \right)^k W_{t-k} + u_{2t} + \Omega_1 u_{3t} - \Omega_2^{-1} u_{5t} + \left(1 + \Omega_2^{-1}\right) D \left(\gamma_1 - \gamma_2 \Omega_2 \right).$$  \hspace{1cm} (19b)

2. Comparative statics

We are now ready to derive the variance of the exchange rate, which measures the degree of exchange rate variability. For the purpose of exposition, we assume that the variance of each random disturbance equals unity. We also assume that all disturbances do not jointly impinge on the economy. Under these assumptions, the use of equation (19a) allows us to derive the variance of the nominal exchange rate $e_t$ that fluctuates due to disturbance $i$ as follows:

$$\sigma_{e,i}^2 = \frac{\Omega_2^2}{1 - \xi^2} \{M_{c,i}\}, \quad i = 1, 2, 3, 4, 5$$  \hspace{1cm} (20a)

where

$$\xi = \left(\gamma_1 - \gamma_2 \Omega_2 \right),$$

$$M_{c,1} = \gamma_5^2,$$

$$M_{c,2} = \left[1 + \left(\gamma_1 + \gamma_4 \right)^2 - 2 (\gamma_1 + \gamma_4) \xi \right],$$

$$M_{c,3} = \left[\Omega_1^2 + (\gamma_5 - \gamma_1 \Omega_1)^2 + 2 \Omega_1 (\gamma_5 - \gamma_1 \Omega_1) \xi \right],$$

$$M_{c,4} = \gamma_6^2,$$

$$M_{c,5} = \left[\Omega_2^2 + \Omega_2^2 \gamma_1^2 - 2 \Omega_2^2 \gamma_1 \xi \right].$$

implies $\gamma_1 > 0$. Therefore, we have $1 > \lambda_1 \cdot \lambda_2 > 0$ and $\lambda_1 + \lambda_2 > 1$. In other words, $\lambda_1 > 1 > \lambda_2 > 0$ or $1 > \lambda_1 > \lambda_2 > 0$. 

9
From equation (19b) we can similarly derive the variance of the real exchange rate $q_i$ that fluctuates due to disturbance $i$ as follows:

$$
\sigma^2_{q_i} = \frac{(1 + \Omega_2)^2}{1 - \xi^2} \{M_{q,i}\}, \quad i = 1, 2, 3, 4, 5 \tag{20b}
$$

where

$$
M_{q,1} = M_{e,1},
$$
$$
M_{q,2} = \left[ 4 - 3\xi^2 + (\gamma_1 + \gamma_4)^2 - 2(\gamma_1 + \gamma_4)\xi \right],
$$
$$
M_{q,3} = \left[ (4 - 3\xi^2)\Omega_2^2 + (\gamma_5 - \gamma_1\Omega_1)^2 + 2\Omega_1(\gamma_5 - \gamma_1\Omega_1)\xi \right],
$$
$$
M_{q,4} = M_{e,4},
$$
$$
M_{q,5} = \left[ (4 - 3\xi^2)\Omega_2^2 + \Omega_5^2\gamma_1^2 - 2\Omega_5^2\gamma_1\xi \right].
$$

Equations (20a) and (20b) are of great interest to the purpose of this paper for they measure exchange rate volatility. Based on these equations, we will proceed to examine how an increased trade balance affects exchange rate volatility. Differentiating equations (20a) and (20b) with respect to $b_2$, we have the following proposition (proof is provided in Appendix):

**Proposition:**

1. When the domestic absorption shock ($u_1$) disturbs the economy, an increased trade balance (relative to domestic aggregate demand) reduces nominal (and real) exchange rate volatility; that is, $\frac{\partial \sigma^2_{e,1}}{\partial b_2} < 0$ and $\frac{\partial \sigma^2_{q,1}}{\partial b_2} < 0$.

2. In the presence of foreign real income disturbance ($u_4$) and foreign nominal rate of
interest disturbance \( (u_5) \)], an increased trade balance augments nominal (and real) exchange rate volatility; that is, \( \frac{\partial \sigma_{e}^{2}}{\partial b_2} > 0 \), \( \frac{\partial \sigma_{q}^{2}}{\partial b_2} > 0 \), \( \frac{\partial \sigma_{q}^{2}}{\partial b_2} > 0 \), and \( \frac{\partial \sigma_{q}^{2}}{\partial b_2} > 0 \).

3. If \( \Omega_2 > 1 \), and when domestic nominal money disturbance \( (u_2) \) disturbs the economy, then an increased trade balance augments nominal (and real) exchange rate volatility; that is, \( \frac{\partial \sigma_{e}^{2}}{\partial b_2} > 0 \) and \( \frac{\partial \sigma_{q}^{2}}{\partial b_2} > 0 \).

The above proposition indicates that an increased trade balance might aggravate or alleviate the nominal (and real) exchange rate, depending on the source of the disturbances. As for the effect of an increased trade balance on exchange rate volatility when a domestic real income disturbance \( (u_3) \) disturbs the economy, the comparative statics result is too complicated to determine its sign, which prompts us to resort to numerical simulations in the following section.

IV. Numerical Simulations

1. Parameter values

For the purpose of numerical simulations, the second column of Table 2 presents a set of baseline parameter values and the third column says the range for a parameter to change. The explanations of baseline parameter values are in order. First, the share of domestic absorption in aggregate demand \( b_1 \) is set equal to 0.90, and the parameter \( b_2 \) reflecting the importance of international trade balance in aggregate demand is calibrated under the assumption that \( d_t \) is equal to zero and the trade balance relative to aggregate demand ranges from 0.01 to 0.30. It turns out that the value of \( b_2 \) is between 0.9 and 1.07 (see Table 3 for details.)

Second, the value of \( \alpha_1 \) measuring the elasticity of domestic income to aggregate demand is set
equal to 0.3 and is allowed to range from 0.1 to 0.8, while the value of $\alpha_2$ measuring the real interest rate semi-elasticity of domestic absorption is set at 0.30. Third, the semi-elasticity of trade balance with respect to current terms of trade $\beta_1$ is set equal to 0.1, while the semi-elasticity of trade balance with respect to foreign income $\beta_2$ and that with respect to domestic income $\beta_3$ are equally set at 0.3. Both are allowed to range from 0.1 to 0.8.

Fourth, the income elasticity of real money demand $\Omega_1$ is set at 0.3 and is allowed to change from 0.1 to 0.8. Most empirical estimates indicate that the interest-rate elasticity of real money demand is around 0.02. It thus turns out that the interest-rate semi elasticity $1/\Omega_2$ is 0.6667, or $\Omega_2$ approximates to 1.5. Finally, the baseline parameter value of the degree of price flexibility $\phi$ is set equal to 0.5, but it is allowed to change in a wide range from 0.001 to 1; that is, from being inelastic to unitary elastic. Note that the parameter values chosen in Table 2 ensure that the system exists at least one stable characteristic root (see Footnote 6).

### Table 2 Parameter Values

<table>
<thead>
<tr>
<th>Parameter Set</th>
<th>Baseline Values</th>
<th>Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_1$</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>$b_2$</td>
<td>0.9</td>
<td>0.92</td>
</tr>
<tr>
<td>$\alpha_1$</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>$\alpha_2$</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>$\beta_1$</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>$\beta_2$</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>$\beta_3$</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>$\Omega_1$</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>$\Omega_2$</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>$\phi$</td>
<td>0.5</td>
<td>0.001</td>
</tr>
</tbody>
</table>

$1 -(1 + \Omega_2 )((b_2 \beta_1 \phi + b_1 \alpha_2 \phi))$  

$\lambda_1 \lambda_2 = \gamma_1 - \gamma_2 \Omega_2$  

<table>
<thead>
<tr>
<th></th>
<th>0.55</th>
<th>0.9991</th>
<th>0.9909</th>
<th>0.9540</th>
<th>0.9075</th>
<th>0.0575</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.64</td>
<td>0.9994</td>
<td>0.9936</td>
<td>0.9671</td>
<td>0.9327</td>
<td>0.0788</td>
</tr>
</tbody>
</table>
Table 3 Trade Balance and the Value of $b_2$

<table>
<thead>
<tr>
<th>Scenario</th>
<th>$\bar{D} = \bar{Y}$</th>
<th>$\bar{A}$</th>
<th>$\bar{r}$</th>
<th>$\bar{d}$</th>
<th>$\bar{a}$</th>
<th>$b_1$</th>
<th>$b_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.99</td>
<td>0.01</td>
<td>0</td>
<td>-0.0101</td>
<td>0.9</td>
<td>0.90</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.95</td>
<td>0.05</td>
<td>0</td>
<td>-0.0513</td>
<td>0.9</td>
<td>0.92</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.90</td>
<td>0.10</td>
<td>0</td>
<td>-0.1054</td>
<td>0.9</td>
<td>0.95</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.85</td>
<td>0.15</td>
<td>0</td>
<td>-0.1625</td>
<td>0.9</td>
<td>0.98</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.80</td>
<td>0.20</td>
<td>0</td>
<td>-0.2231</td>
<td>0.9</td>
<td>1.00</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.70</td>
<td>0.30</td>
<td>0</td>
<td>-0.3567</td>
<td>0.9</td>
<td>1.07</td>
</tr>
</tbody>
</table>

2. Simulation results with baseline parameter values

Given the baseline parameter values, the first part of numerical simulations is conducted by allowing $b_2$ to take on values ranging from 0.90 to 1.07. The variance of the nominal exchange rate (equation 20a) and the variance of the real exchange rate (equation 20b) are then computed for each chosen value of $b_2$. The numerical results of the effects of a trade balance on nominal exchange rate volatility and real exchange rate volatility are reported in Table 4 and Table 5, respectively, and their qualitative outcomes are summarized in Table 6. A striking finding is that an increase in the weight of a trade balance in aggregate demand ($b_2$) tends to decrease both nominal and real exchange rate volatilities when a domestic absorption disturbance ($u_1$) agitates the economy. However, in the presence of all other disturbances (domestic nominal money disturbance ($u_2$), domestic real income disturbance ($u_3$), foreign real income disturbance ($u_4$), or foreign nominal rate of interest disturbance ($u_5$)), an increased trade balance weight tends to be destabilizing rather than stabilizing both the nominal and real exchange rate volatilities.

Some other findings from Table 4 and Table 5 also deserve attention. First, the variance of real exchange rate volatility is much larger than the variance of nominal exchange rate is in all cases. Second, in the presence of a foreign real income disturbance ($u_4$), the variance of the
exchange rate turns out to be far below unity. However, the exchange rate variance exceeds unity in the presence of all other disturbances in most scenarios. Third, the domestic monetary shock is seen to have the most powerful destabilizing effect on exchange rate movements, for the nominal (real) exchange-rate variance is more than two (twenty-six) times as much as the variance of \( u_2 \) in all cases, which is accordance with the overshooting phenomenon firstly formulated in Dornbusch (1976).

Table 4 Variance of Nominal Exchange Rate: Baseline Parameter Values

<table>
<thead>
<tr>
<th>( b_2 )</th>
<th>( u_1 )</th>
<th>( u_2 )</th>
<th>( u_3 )</th>
<th>( u_4 )</th>
<th>( u_5 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>1.0222</td>
<td>2.6180</td>
<td>1.9065</td>
<td>0.0920</td>
<td>1.0102</td>
</tr>
<tr>
<td>0.92</td>
<td>1.0160</td>
<td>2.6198</td>
<td>1.9162</td>
<td>0.0955</td>
<td>1.0106</td>
</tr>
<tr>
<td>0.95</td>
<td>1.0068</td>
<td>2.6226</td>
<td>1.9310</td>
<td>0.1010</td>
<td>1.0112</td>
</tr>
<tr>
<td>0.98</td>
<td>0.9978</td>
<td>2.6254</td>
<td>1.9458</td>
<td>0.1065</td>
<td>1.0118</td>
</tr>
<tr>
<td>1.00</td>
<td>0.9920</td>
<td>2.6272</td>
<td>1.9557</td>
<td>0.1102</td>
<td>1.0123</td>
</tr>
<tr>
<td>1.07</td>
<td>0.9722</td>
<td>2.6338</td>
<td>1.9909</td>
<td>0.1237</td>
<td>1.0137</td>
</tr>
</tbody>
</table>

Table 5 Variance of Real Exchange Rate: Baseline Parameter Values

<table>
<thead>
<tr>
<th>( b_2 )</th>
<th>( u_1 )</th>
<th>( u_2 )</th>
<th>( u_3 )</th>
<th>( u_4 )</th>
<th>( u_5 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>2.8395</td>
<td>26.0222</td>
<td>6.9833</td>
<td>0.2556</td>
<td>11.1395</td>
</tr>
<tr>
<td>0.92</td>
<td>2.8221</td>
<td>26.0273</td>
<td>7.0104</td>
<td>0.2654</td>
<td>11.1406</td>
</tr>
<tr>
<td>0.95</td>
<td>2.7966</td>
<td>26.0349</td>
<td>7.0513</td>
<td>0.2804</td>
<td>11.1423</td>
</tr>
<tr>
<td>0.98</td>
<td>2.7717</td>
<td>26.0426</td>
<td>7.0924</td>
<td>0.2958</td>
<td>11.1440</td>
</tr>
<tr>
<td>1.00</td>
<td>2.7554</td>
<td>26.0478</td>
<td>7.1200</td>
<td>0.3062</td>
<td>11.1451</td>
</tr>
<tr>
<td>1.07</td>
<td>2.7006</td>
<td>26.0662</td>
<td>7.2177</td>
<td>0.3435</td>
<td>11.1493</td>
</tr>
</tbody>
</table>

Table 6 Summary of Qualitative Results with Baseline Parameter Values

<table>
<thead>
<tr>
<th>Source of Disturbance</th>
<th>Effect on Exchange Rate Volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic absorption, ( u_1 )</td>
<td>-</td>
</tr>
<tr>
<td>Domestic nominal money, ( u_2 )</td>
<td>+</td>
</tr>
<tr>
<td>Domestic real income, ( u_3 )</td>
<td>+</td>
</tr>
<tr>
<td>Foreign real income, ( u_4 )</td>
<td>+</td>
</tr>
<tr>
<td>Nominal foreign rate of interest, ( u_5 )</td>
<td>+</td>
</tr>
</tbody>
</table>
3. Sensitivity analysis

The second part of the numerical simulations is a sensitivity analysis, which is to see whether the above numerical results are robust to changes in the values of some parameters including $\alpha_1, \beta_2, \beta_3, \Omega_1$ and $\phi$. Since the qualitative results for all disturbances except for domestic real income disturbance ($u_3$) are known from our comparative statics results, our sensitivity analysis thus focuses on the case of a domestic real income disturbance. Tables 7-8 report the results of sensitivity analysis. It is found that the exchange rate variance is sensitive to the parameter values of $\alpha_1$, $\beta_3$ and $\Omega_1$ in the presence of $u_3$. When the values of $\alpha_1$, or $\beta_3$, or $\Omega_1$, are small, an increased trade balance $b_2$ tends to decrease exchange rate volatility if the price adjustment is inelastic, but it turns out to be destabilizing if the price adjustment is unit elastic. However, when the values of $\alpha_1$, $\beta_3$ and $\Omega_1$ are set at 0.4 or higher, then increased trade balance tends to increase exchange rate volatility whether the price adjustment is inelastic or unit elastic.

Table 7 Sensitivity Analysis of Nominal Rate Variance against Domestic Real Income Disturbance

<table>
<thead>
<tr>
<th>$\alpha_1, \beta_3, \Omega_1$</th>
<th>0.1</th>
<th>0.4</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_2$</td>
<td>$\phi$</td>
<td>$\phi$</td>
<td>$\phi$</td>
</tr>
<tr>
<td>0.90</td>
<td>0.02448</td>
<td>0.02448</td>
<td>0.02447</td>
</tr>
<tr>
<td>0.92</td>
<td>0.02448</td>
<td>0.02448</td>
<td>0.02447</td>
</tr>
<tr>
<td>0.95</td>
<td>0.02447</td>
<td>0.02447</td>
<td>0.02447</td>
</tr>
<tr>
<td>0.001</td>
<td>0.1247</td>
<td>0.1243</td>
<td>0.1238</td>
</tr>
<tr>
<td>0.05</td>
<td>4.8027</td>
<td>4.8146</td>
<td>4.8334</td>
</tr>
<tr>
<td>1</td>
<td>0.36264</td>
<td>0.36266</td>
<td>0.36269</td>
</tr>
<tr>
<td>0.001</td>
<td>0.4960</td>
<td>0.4970</td>
<td>0.4985</td>
</tr>
<tr>
<td>0.05</td>
<td>6.7226</td>
<td>6.8072</td>
<td>6.9364</td>
</tr>
<tr>
<td>1</td>
<td>1.44366</td>
<td>1.44373</td>
<td>1.44383</td>
</tr>
<tr>
<td>0.001</td>
<td>1.6286</td>
<td>1.6320</td>
<td>1.6371</td>
</tr>
<tr>
<td>0.05</td>
<td>10.2637</td>
<td>10.4750</td>
<td>10.7977</td>
</tr>
</tbody>
</table>
Table 8 Sensitivity Analysis of Real Rate Variance against Domestic Real Income Disturbance

<table>
<thead>
<tr>
<th>$\alpha_i, \beta_i, \Omega_i$</th>
<th>0.1</th>
<th>0.4</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_2$</td>
<td>0.001</td>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>$\phi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td>0.25551</td>
<td>0.5338</td>
<td>13.528</td>
</tr>
<tr>
<td>0.92</td>
<td>0.25549</td>
<td>0.5329</td>
<td>13.562</td>
</tr>
<tr>
<td>0.95</td>
<td>0.25547</td>
<td>0.5314</td>
<td>13.614</td>
</tr>
<tr>
<td>0.98</td>
<td>0.25544</td>
<td>0.5301</td>
<td>13.669</td>
</tr>
<tr>
<td>1.00</td>
<td>0.25542</td>
<td>0.5292</td>
<td>13.707</td>
</tr>
<tr>
<td>1.07</td>
<td>0.25536</td>
<td>0.5261</td>
<td>13.851</td>
</tr>
</tbody>
</table>

Notes: Robust to changes in the values of $\beta_i$.

V. Conclusion

This paper examines the relationship between trade balance and exchange rate volatility, using a stochastic small open economy model with sticky prices. Several random disturbances that disturb the economy and cause exchange rate fluctuations are considered. These disturbances include shocks to domestic absorption, domestic money stock, domestic income, foreign income, and foreign nominal interest rate. Both Comparative statics and numerical simulations with sensitivity analysis are conducted.

This paper finds that an increased trade balance (relative to domestic aggregate demand) tends to reduce exchange rate volatility when a domestic absorption shock disturbs the economy. In the presence of all other domestic and foreign shocks, however, an increased trade balance tends to augment exchange-rate volatility, except for the case of a disturbance of domestic real income in which the effect of an increased trade balance is indeterminate. Our results suggest that whether a
trade imbalance aggravates exchange rate volatility in many industrial countries is an open question. Further research to solve this question through empirical investigation seems warranted.

This paper therefore calls into question the role of international trade in dampening exchange rate fluctuations in an international environment affected simultaneously by multiple sources of random disturbances, be it domestic or foreign.
References


Appendix: Comparative Statics

A.1 The volatility of the nominal exchange rate

Differentiating equation (20a) with respect to $b_2$, we have

$$\frac{\partial \sigma^2_{e1}}{\partial b_2} = \frac{2h^2\beta_0\Omega^2(1 + \Omega^2)\Psi_1(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi)}{\left[\Gamma(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi)\right]^2}, \quad (A1a)$$

$$\frac{\partial \sigma^2_{e2}}{\partial b_2} = \frac{2\beta_0\Omega^4(b_1\alpha_2 + b_2\beta_1)\Psi_2(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi)}{\left[\Gamma(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi)\right]^2}, \quad (A1b)$$

$$\frac{\partial \sigma^2_{e4}}{\partial b_2} = \frac{2h^2\beta_0^2\phi\Omega^3\Psi_3(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi)}{\left[\Gamma(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi)\right]^2}, \quad (A1c)$$

$$\frac{\partial \sigma^2_{e5}}{\partial b_2} = \frac{2h^2\beta_0^2\phi\Omega^3\Psi_3(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi)}{\left[\Gamma(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi)\right]^2}, \quad (A1d)$$

where

$$\Gamma(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi) = \left[b_1\alpha_2\Omega_2 + b_2\beta_1(1 + \Omega_2)\right] \left[-2b_2\beta_1\phi(1 + \Omega_2) + b_1\alpha_2(2 + \Omega_2)\right]$$

$$\Psi_1(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi) = -1 + \phi(1 + \Omega_2)(b_1\alpha_2 + b_2\beta_1),$$

$$\Psi_2(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi) = h^2\alpha_2^2\phi + b_1\alpha_2(\Omega_2 - 1) + b_2\beta_1(1 + \Omega_2),$$

$$\Psi_3(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi) = b_2\beta_1(1 + \Omega_2)\left[1 - b_1\alpha_2\phi(1 + \Omega_2)\right] + b_1\alpha_2\Omega_2\left[2 - b_1\alpha_2\phi(2 + \Omega_2)\right].$$

The stability condition, $1 - \phi(1 + \Omega_2)(b_1\alpha_2 + b_2\beta_1) > 0$, implies $\Psi_1(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi) < 0$. Thus,

$$\frac{\partial \sigma^2_{e1}}{\partial b_2} < 0. \quad (A2a)$$

Moreover, since

$$\frac{1}{(1 + \Omega_2)h_1\alpha_2} - \frac{1}{(1 + \Omega_2)(b_1\alpha_2 + b_2\beta_1)} = \frac{b_2\beta_1}{b_1\alpha_2(1 + \Omega_2)(b_1\alpha_2 + b_2\beta_1)} > 0$$
and
\[
\frac{2}{(2 + \Omega_2)\alpha_2} \frac{1}{(1 + \Omega_2)(b_2\alpha_2 + b_2\beta_1)} = \frac{b_1\alpha_2\Omega_2 + 2b_2\beta_1(1 + \Omega_2)}{b_2\alpha_2(1 + \Omega_2)(2 + \Omega_2)(b_2\alpha_2 + b_2\beta_1)} > 0,
\]
these imply that \( \Psi_3(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi) > 0 \), or
\[
\frac{\partial\sigma_{e.4}^2}{\partial b_2} > 0, \tag{A2b}
\]
and
\[
\frac{\partial\sigma_{e.5}^2}{\partial b_2} > 0. \tag{A2c}
\]
Finally, if \( \Omega_2 > 1 \), then we have
\[
\frac{\partial\sigma_{e.2}^2}{\partial b_2} > 0. \tag{A2d}
\]

A.2 The volatility of the real exchange rate

Differentiating equation (20b) with respect to \( b_2 \) and applying similar reasoning as we have used in proving the change in the volatility of the nominal exchange rate in A.1, we have
\[
\frac{\partial\sigma_{q.4}^2}{\partial b_2} = \frac{2b_2\beta_1\Omega_2^2(1 + \Omega_2)^2 \Psi_1(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi)}{[\Gamma(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi)]^2} < 0, \tag{A3a}
\]
\[
\frac{\partial\sigma_{q.5}^2}{\partial b_2} = \frac{2b_2\beta_1\Omega_2^2(1 + \Omega_2)^2 (b_2\alpha_2 + b_2\beta_1) \Psi_2(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi)}{[\Gamma(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi)]^2} > 0, \text{ if } \Omega_2 > 1 \tag{A3b}
\]
\[
\frac{\partial\sigma_{q.4}^2}{\partial b_2} = \frac{2b_2\beta_1^2 \Omega_2^2 (1 + \Omega_2)^2 \Psi_3(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi)}{[\Gamma(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi)]^2} > 0, \tag{A3c}
\]
\[
\frac{\partial\sigma_{q.5}^2}{\partial b_2} = \frac{2b_2\beta_1^2 \Omega_2^2 (1 + \Omega_2)^2 \Psi_3(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi)}{[\Gamma(b_1, b_2, \beta_1, \alpha_2, \Omega_2, \phi)]^2} > 0. \tag{A3d}
\]